Основные механические характеристики материалов Основы конструирования приборов Реферат по теме




НазваниеОсновные механические характеристики материалов Основы конструирования приборов Реферат по теме
страница1/3
Дата конвертации01.06.2013
Размер26.88 Kb.
ТипРеферат
  1   2   3
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме
Основные механические характеристики материалов Студента группы ИУ 3-32 Кондратова Николая Диаграмма растяжения Построение диаграммы растяжения-сжатия является основной задачей испытаний на растяжение-сжатие. Для этих испытаний используются цилиндрические образцы; полученные диаграммы являются зависимостью между силой, действующей на образец, и его удлинением. На рис. 1 показана типичная для углеродистой стали диаграмма испытания образца в координатах P, l. Кривая условно может быть разделена на четыре зоны.
Зона ОА носит название зоны упругости. Здесь материал под­чиняется закону Гука и Рис. 1.
Удли­нения l на участке ОА очень малы, и прямая ОА, будучи вы­черченной в масштабе, совпадала бы в пределах ширины линии с осью ординат. Величина силы, для которой остается справедли­вым закон Гука, зависит от размеров образца и физических свойств материала.
Зона АВ называется зоной общей текучести, а. участок АВ диаграммы — площадкой текучести. Здесь происходит существен­ное изменение длины образца без заметного увеличения нагрузки. В большинстве случаев при испытании на растяжение и сжатие площадка АВ не обнаруживается, и диаграмма растяжения образца имеет вид кривых, показанных на рис. 2. Кривая 1 ти­пична для алюминия и отожженной меди, кривая 2 — для высоко­качественных легированных сталей.
Зона ВС называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более мед­ленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образо­вываться так называемая шейка — местное сужение образца (рис.3). По мере растяжения об­разца утонение шейки прогрессирует. Когда от­носительное уменьшение площади сечения срав­няется с относительным возрастанием напряже­ния, сила Р достигнет максимума (точка С). В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шей­ки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой CD называется зоной местной текучести. Точка D соответствует разрушению образца. У многих материалов разрушение происходит без заметного образования шейки.
Если испытуемый образец, не доводя до разрушения, разгру­зить (точка К рис. 4), то в процессе, разгрузки зависимость между силой Р и удлинением l изобразится прямой КL (рис. 4). Опыт показывает, что эта прямая параллельна прямой ОА.
Рис. 2
При разгрузке удлинение полностью не исчезает. Оно уменьшается на величину упругой части удлинения (отрезок LM). Отрезок OL представляет собой остаточное удлинение. Его называют также пластическим удлинением, а соответствующую ему деформацию — пластической деформацией. Таким образом, ОМ=lупр + lост.
Соответственно
 = упр + ост Если образец был нагружен в пределах участка ОА и затем раз­гружен, то удлинение будет чисто упругим, и lост = 0.
Рис. 3
При повторном нагружении образца диаграмма растяжения при­нимает вид прямой LK и далее — кривой KCD (рис.4), как будто промежуточной разгрузки и не было.
Если взять два одинаковых образца, изготовленных из одного и того же материала, причем один из образцов до испытания нагружению не под­вергается, а другой — был пред­варительно нагружен силами, вызвавшими в образце остаточ­ные деформации.
Рис. 4
Испытывая первый образец, мы получим диаграмму растя­жения OABCD, показанную на рис. 5, а. При испытании вто­рого образца отсчет удлинения будет производиться от ненагруженного состояния, и остаточное удлинение OL уч­тено не будет. В результате по­лучим укороченную диаграмму LKCD (рис. 5, б). Отрезок МК соответствует силе предваритель­ного нагружения. Таким образом, вид диаграммы для одного и того же материала зависит от степени начального нагружения (вытяжки), а само нагружение выступает теперь уже в роли неко­торой предварительной технологической операции. Весьма сущест­венным является то, что отрезок LK (рис. 5,б) оказывается больше отрезка ОА. Следовательно, в результате предварительной вытяжки материал приобретает способность воспринимать без остаточных деформаций большие нагрузки.
Рис. 5
Явление повышения упругих свойств материала в результате предварительного пластического деформирования носит название наклепа, или нагартовки, и широко используется в технике.
Например, для придания упругих свойств листовой меди или ла­туни, ее в холодном состоянии прокатывают на валках. Цепи, тросы, ремни часто подвергают предварительной вытяжке силами, превыша­ющими рабочие, с тем, чтобы избежать остаточных удлинений в даль­нейшем. В некоторых случаях явление наклепа оказывается нежела­тельным, как, например, в процессе штамповки многих тонкостен­ных деталей. В этом случае для того, чтобы избежать разрыва листа, вытяжку производят в несколько ступеней. Перед очередной опера­цией вытяжки деталь подвергается отжигу, в результате которого наклеп снимается.
Основные механические характеристики материала Для того, чтобы оценить свойства не образца, а материала, перестраивается диаграмма растяжения P = f (l) в коорди­натах  и . Для этого уменьшим в F раз ординаты и в l раз абс­циссы, где F и l — соответственно площадь поперечного сечения и рабочая длина образца до нагружения. Так как эти величины по­стоянны, то диаграмма  = f () имеет тот же вид, что и диаграмма растяжения, но будет характеризовать уже не свойства образца, а свойства ма­териала.
Наибольшее напряже­ние, до которого матери­ал следует закону Гука, называется пределов про­порциональности (n).
Величина предела пропорциональности за­висит от той степени точности, с которой начальный участок диаграммы можно рассмат­ривать как прямую. Степень отклонения кривой  = f () от прямой  = Е определяют по величине угла, который составляет касатель­ная к диаграмме с осью . В пределах закона Гука тангенс этого угла определяется величиной 1/E. Обычно считают, что если вели­чина d/d оказалась на 50% больше чем 1/Е, то предел пропор­циональности достигнут.
Упругие свойства материала сохраняются до напряжения, на­зываемого пределом упругости (у) --- наибольшего напряжения, до которого материал не получает остаточных деформаций.
Для того чтобы найти предел упругости, необходимо после каждой дополнительной нагрузки образец разгружать и сле­дить, не образовалась ли остаточная деформация. Так как пластиче­ские деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, ясно, что величина предела упругости, как и предела пропорциональности, зависит от требований точно­сти, которые накладываются на производимые замеры. Обычно оста­точную деформацию, соответствующую пределу упругости, прини­мают в пределах ост= (15) 10-5, т. е. 0,001  0,005%. Соответ­ственно этому допуску предел упругости обозначается через 0.001 или 0.005
Следующей характеристикой является предел текучести --- напря­жение, при котором происходит рост деформации без заметного увеличения нагрузки. В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести при­нимается условно величина напряжения, при котором остаточная деформация ост = 0,002 или 0,2% (рис. 6). В неко­торых случаях устанавливается предел ост =0,5%.
Рис. 6
Условный предел текучести обозначает­ся через 0.2 и 0.5 зависимости от приня­той величины допуска .на остаточную де­формацию. Индекс 0,2 обычно в обозначе­ниях предела текучести опускается. Если необходимо отличить предел текучести на растяжение от предела текучести на сжа­тие, то в обозначение вводится соответственно дополни­тельный индекс «р» или «с». Таким образом, для предела текучести получаем обозначения тр и ст.
Предел текучести легко поддается определению и является одной из основных механических характеристик материала.
Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит назва­ние предела прочности, или временного сопротивления, и обознача­ется через вр ( сжатие — вс).
вр не есть напряжение, при котором разрушается образец. Если относить растягивающую силу не к на­чальной площади сечения образца, а к наименьшему сечению в дан­ный момент, можно обнаружить, что среднее напряжение в наи­более узком сечении образца перед разрывом существенно больше, чем вр. Таким образом, предел прочности также является услов­ной величиной. В силу удобства и простоты ее определения она прочно вошла в расчетную практику как основная сравнительная характеристика прочностных свойств материала.
Рис. 7
При испытании на растяжение определяется еще одна харак­теристика материала — удлинение при раз­рыве %.
Удлинение при разрыве представляет собой величину средней остаточной деформации, которая образуется к моменту разрыва на определенной стандартной длине образца. Определение %. про­изводится следующим образом.
Перед испытанием на поверхность образца наносится ряд рисок, делящих рабочую часть образца на равные части. После того как образец испытан и разорван, обе его части составляются по месту разрыва (рис. 7). Далее, по имеющимся на поверхности рискам от сечения разрыва вправо и влево откладываются отрезки, имевшие до испытания длину 5d (рис. 7). Таким образом определяется сред­нее удлинение на стандартной длине l0 = 10d. В некоторых слу­чаях за l0 принимается длина, равная 5d.
Удлинение при разрыве будет следующим:
Возникающие деформации распределены по длине образца нерав­номерно. Если произвести обмер отрезков, расположенных между соседними рисками, можно построить эпюру остаточных удлине­ний, показанную на рис. 7. Наибольшее удлинение возникает в месте разрыва. Оно называется обычно истинным удлинением при разрыве.
Диаграмма растяжения, построенная с учетом уменьшения пло­щади F и местного увеличения деформации, называется истинной диаграммой растяжения (кривая OC'D' на рис. 8).
Рис. 8 D’
Пластичность и хрупкость. Твердость Способность материала получать большие остаточные деформа­ции, не разрушаясь, носит название пластичности. Свойство пла­стичности имеет решающее значение для таких технологических опе­раций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение  при разрыве. Чем больше , тем более пластичным считается материал. Противоположным свойству пластичности яв­ляется свойство хрупкости, т. е. способность ма­териала разрушаться без образования заметных остаточных деформаций. Материалы, обладающие этим свойством, называются хрупкими. Для таких материалов величина удлинения при разрыве не превышает 2—5%, а в ряде случаев измеряется долями процента. К хрупким мате­риалам относятся чугун, высокоуглеродистая инструментальная сталь, стекло, кирпич, камни и др. Диаграмма растяжения хруп­ких материалов не имеет площадки текучести и зоны упрочнения (рис. 9).
  1   2   3

Похожие:

Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconОбщие сведения о полимерных строительных материалах Классификация полимерных строительных материалов
...
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconРеферат на тему: основные генетические характеристики популяции москва, 2001 г
Основные генетические характеристики популяции московская медицинская академия им. Сеченовакафедра биологии с общей генетикой реферат...
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconПодшипники. Рабочие и эксплуатационные характеристики подшипников, устанавливаемых в подшипниковых узлах машин, механизмов и приборов. Общий каталог. 458 с., 61 ил. М. 2005
Приведены классификация и основные типы подшипников, система услов­ных обозначений отечественных подшипников, их рабочие и эксплуатационные...
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconРеферат по теме Основные звездные характеристики Рождение звезд группа
Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны быть меньше...
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconРеферат на тему: "механические колебания"
Физическая природа колебаний может быть разной, однако различные колебательные процессы описываются одинаковыми характеристиками...
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconРеферат по теме: "Радиация вокруг нас" План
Основные экологические проблемы городов и особенно мегаполисов. Экология и здоровье человека
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconРеферат по теме: "Радиация вокруг нас" План
Основные экологические проблемы городов и особенно мегаполисов. Экология и здоровье человека
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconРеферат по теме ip-телефония реферат
Управления образования Администрации Шатурского района Московской области реферат
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме iconB{Оглавление:} {img418} b{новости компании овен}
Новая линейка приборов овен трм2хх {img420} Универсальные входы, два индикатора на лицевой панели, интерфейс rs-485, импульсный блок...
Основные механические характеристики материалов Основы конструирования приборов Реферат по теме icon1. Правовое государство. Понятие и основные черты Идея правового государства, возникновение и развитие
Основные характеристики правового государства 2 Признаки правового государства 2 Понятие правового государства 2 Принцип организации...
Разместите кнопку на своём сайте:
txt.rushkolnik.ru



База данных защищена авторским правом ©txt.rushkolnik.ru 2012
обратиться к администрации
txt.rushkolnik.ru
Главная страница